介绍和解法,参见wikipedia
笔记:
在按下标顺序遍历序列 X 的过程中,记录所有不同长度 L 的增长最慢的递增子序列,因为序列是递增的,只需要记录其最大元素,记为 M[L]
比如,对于序列 5,8,9,6,7,在访问 6 之前,M[1]=5,M[2]=8,M[3]=9。
访问 6 时,长度为2 的增长最慢的递增子序列为5,6,因此 M[2] 变为 6。
同理,访问 7 时, M[3] 变为 7。
遍历结束后,M 的长度即为 LIS 的长度,但并不知道这个 LIS 是什么。
为了得到 LIS,将原来 M 保存的数据改为该数据在序列 X 中的 index;
并且,在遍历 X 的过程中,记录每个元素 X[i] 在候选的递增子序列中的前驱元素在序列 X 中的 index,记为P[i]
这样在遍历结束后,就可以从后往前输出 LIS:记 M 长度为 m,有:
LIS[m] = X[ M[m] ]LIS[m-1] = X[ P[M[m]] ]LIS[m-2] = X[P[P[M[m]]]]......
wikipedia 原文引用如下:
It processes the sequence elements in order, maintaining the longest increasing subsequence found so far. Denote the sequence values as X[0], X[1], etc. Then, after processing X[i], the algorithm will have stored values in two arrays:
- M[ j] — stores the index k of the smallest value X[ k] such that there is an increasing subsequence of length j ending at X[ k] on the range k ≤ i. Note that j ≤ (i+1), because j ≥ 1 represents the length of the increasing subsequence, and k ≥ 0 represents the index of its termination.
- P[ k] — stores the index of the predecessor of X[ k] in the longest increasing subsequence ending at X[ k].
P = array of length N M = array of length N + 1 L = 0 for i in range 0 to N-1: // Binary search for the largest positive j ≤ L // such that X[M[j]] < X[i] lo = 1 hi = L while lo ≤ hi: mid = ceil((lo+hi)/2) if X[M[mid]] < X[i]: lo = mid+1 else: hi = mid-1 // After searching, lo is 1 greater than the // length of the longest prefix of X[i] newL = lo // The predecessor of X[i] is the last index of // the subsequence of length newL-1 P[i] = M[newL-1] M[newL] = i if newL > L: // If we found a subsequence longer than any we've // found yet, update L L = newL // Reconstruct the longest increasing subsequence S = array of length L k = M[L] for i in range L-1 to 0: S[i] = X[k] k = P[k] return S
相关问题:
最长先递增再递减子序列 牛客网
看了解法,思路如下:
遍历序列 X,得到以 X[i] 结尾的 LIS 的长度 Li[i] 和以 X[i] 开始的 LDS 的长度 Ld[i], 找到 Li[i] + Ld[i] 的最大值;
将 X 反向再求 LIS 即最长递减子序列 LDS;
在上述解法中加入 Li[i]:Li[i] = L[P[i]] + (newL > L) ? 1 : 0
最长公共子序列 Longest Common Subsequence(LCS) 可参见算法导论
TODO: Longest Common Subsequence for Multiple Sequences